Group actions

Sasha Patotski

Cornell University

ap744@cornell.edu

December 7, 2015

Let G be a group and X be a set. An **action** of G on X is a homomorphism $G \to Bij(X)$.

• Equivalently, action of G on X is a map $G \times X \to X$, $(g, x) \mapsto g.x$ such that g.(h.x) = (gh).x and e.x = x.

Examples

- For any group G and any set X there is always the trivial action g.x = x, for any g ∈ G, x ∈ X.
- The symmetric group S_n acts on the set $X = \{1, 2, ..., n\}$ by permuting the numbers.
- S_4 acts on a regular tetrahedron.
- $S_4 \times \mathbb{Z}/2$ acts on a cube. S_4 acts on it by rotational symmetries.
- $\mathbb{Z}/2$ and $\mathbb{Z}/3$ are naturally subgroups of $\mathbb{Z}/6$, and so they act on a regular hexagon by rotations.
- The group \mathbb{R} acts on the line \mathbb{R} by translation, i.e. for $g \in \mathbb{R}$ and $v \in \mathbb{R}$, g.v := g + v, the addition of numbers.

Examples

- For any group G and any set X there is always the trivial action g.x = x, for any g ∈ G, x ∈ X.
- The symmetric group S_n acts on the set $X = \{1, 2, ..., n\}$ by permuting the numbers.
- S_4 acts on a regular tetrahedron.
- $S_4 \times \mathbb{Z}/2$ acts on a cube. S_4 acts on it by rotational symmetries.
- $\mathbb{Z}/2$ and $\mathbb{Z}/3$ are naturally subgroups of $\mathbb{Z}/6$, and so they act on a regular hexagon by rotations.
- The group \mathbb{R} acts on the line \mathbb{R} by translation, i.e. for $g \in \mathbb{R}$ and $v \in \mathbb{R}$, g.v := g + v, the addition of numbers.
- The group \mathbb{R} acts on the circle $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ by $x.z := e^{ix}z$. This gives a homomorphism $\mathbb{R} \to Bij(S^1)$. What is its kernel?

Examples

- For any group G and any set X there is always the trivial action g.x = x, for any g ∈ G, x ∈ X.
- The symmetric group S_n acts on the set $X = \{1, 2, ..., n\}$ by permuting the numbers.
- S_4 acts on a regular tetrahedron.
- $S_4 \times \mathbb{Z}/2$ acts on a cube. S_4 acts on it by rotational symmetries.
- $\mathbb{Z}/2$ and $\mathbb{Z}/3$ are naturally subgroups of $\mathbb{Z}/6$, and so they act on a regular hexagon by rotations.
- The group \mathbb{R} acts on the line \mathbb{R} by translation, i.e. for $g \in \mathbb{R}$ and $v \in \mathbb{R}$, g.v := g + v, the addition of numbers.
- The group \mathbb{R} acts on the circle $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ by $x.z := e^{ix}z$. This gives a homomorphism $\mathbb{R} \to Bij(S^1)$. What is its kernel?
- Note that the circle S¹ is itself a group. It acts on ℝ² by rotations. In other words, e^{ix} rotates ℝ² around the origin by the angle x counter-clockwise.

Let G be a group and X be a set. An **action** of G on X is a homomorphism $G \to Bij(X)$.

• Any abstract group G is actually a transformation group.

- Any abstract group G is actually a transformation group.
- Indeed, take X = G with $G \times X \rightarrow X$ being the multiplication map.

- Any abstract group G is actually a transformation group.
- Indeed, take X = G with $G \times X \rightarrow X$ being the multiplication map.
- In other words, to a $g \in G$ we associate a function $L_g \colon X \to X$, mapping $h \in X = G$ to $L_g(h) := gh$.

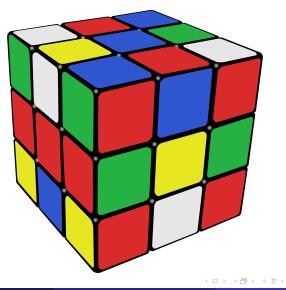
- Any abstract group G is actually a transformation group.
- Indeed, take X = G with $G \times X \rightarrow X$ being the multiplication map.
- In other words, to a $g \in G$ we associate a function $L_g \colon X \to X$, mapping $h \in X = G$ to $L_g(h) := gh$.
- This defines **injective** homomorphism $\varphi \colon G \to Bij(X)$, $g \mapsto L_g$.

- Any abstract group G is actually a transformation group.
- Indeed, take X = G with $G \times X \rightarrow X$ being the multiplication map.
- In other words, to a $g \in G$ we associate a function $L_g \colon X \to X$, mapping $h \in X = G$ to $L_g(h) := gh$.
- This defines **injective** homomorphism $\varphi \colon G \to Bij(X)$, $g \mapsto L_g$.
- **Corollary:** any finite group is a subgroup of S_n for some n.

How many **different** necklaces you can make using 4 blue and 4 white beads?

Frame with pictures 2

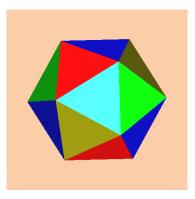
How many different configurations of the Rubic's cube are there?



Frame with pictures 3

How many different placements of *m* people into $n \ge m$ seats are there?

How many colorings of a cube (a tetrahedron, icosahedron, ...) into m colors are there?



Let *G* be a group acting on a set *X*. The **orbit** of $x \in X$ is the set $Gx \subseteq X$, i.e. $Gx = \{g.x \mid g \in G\}$. For a point $x \in X$, its **stabilizer** G_x is the set $G_x = \{g \in G \mid g.x = x\}$.

• Prove that for any $x \in X$, the stabilizer G_x is always a subgroup of G.

Let *G* be a group acting on a set *X*. The **orbit** of $x \in X$ is the set $Gx \subseteq X$, i.e. $Gx = \{g.x \mid g \in G\}$. For a point $x \in X$, its **stabilizer** G_x is the set $G_x = \{g \in G \mid g.x = x\}$.

- Prove that for any $x \in X$, the stabilizer G_x is always a subgroup of G.
- Describe the orbits of the action of S^1 on \mathbb{R}^2 by rotations.

Let *G* be a group acting on a set *X*. The **orbit** of $x \in X$ is the set $Gx \subseteq X$, i.e. $Gx = \{g.x \mid g \in G\}$. For a point $x \in X$, its **stabilizer** G_x is the set $G_x = \{g \in G \mid g.x = x\}$.

- Prove that for any $x \in X$, the stabilizer G_x is always a subgroup of G.
- Describe the orbits of the action of S^1 on \mathbb{R}^2 by rotations.

Theorem

For any action of G on X, two orbits either do not intersect, or coincide. Thus X is a disjoint union of orbits.

Let *G* be a group acting on a set *X*. The **orbit** of $x \in X$ is the set $Gx \subseteq X$, i.e. $Gx = \{g.x \mid g \in G\}$. For a point $x \in X$, its **stabilizer** G_x is the set $G_x = \{g \in G \mid g.x = x\}$.

- Prove that for any $x \in X$, the stabilizer G_x is always a subgroup of G.
- Describe the orbits of the action of S^1 on \mathbb{R}^2 by rotations.

Theorem

For any action of G on X, two orbits either do not intersect, or coincide. Thus X is a disjoint union of orbits.

• If
$$z \in Gx \cap Gy$$
, then $z = a \cdot x = b \cdot y$ for some $a, b \in G$.

Let *G* be a group acting on a set *X*. The **orbit** of $x \in X$ is the set $Gx \subseteq X$, i.e. $Gx = \{g.x \mid g \in G\}$. For a point $x \in X$, its **stabilizer** G_x is the set $G_x = \{g \in G \mid g.x = x\}$.

- Prove that for any $x \in X$, the stabilizer G_x is always a subgroup of G.
- Describe the orbits of the action of S^1 on \mathbb{R}^2 by rotations.

Theorem

For any action of G on X, two orbits either do not intersect, or coincide. Thus X is a disjoint union of orbits.

- If $z \in Gx \cap Gy$, then z = a.x = b.y for some $a, b \in G$.
- But then $x = a^{-1}b.y$, and so Gx = Gy.

Let G be a group acting on a set X. The **orbit** of $x \in X$ is the set $Gx \subseteq X$, i.e. $Gx = \{g.x \mid g \in G\}$.

Let *G* be a group acting on a set *X*. The **orbit** of $x \in X$ is the set $Gx \subseteq X$, i.e. $Gx = \{g.x \mid g \in G\}$.

• S_4 acts on a cube, and so it acts on the sets of vertices, edges and faces of the cube. Describe the orbits of this action.

Let G be a group acting on a set X. The **orbit** of $x \in X$ is the set $Gx \subseteq X$, i.e. $Gx = \{g.x \mid g \in G\}$.

• S_4 acts on a cube, and so it acts on the sets of vertices, edges and faces of the cube. Describe the orbits of this action.

Definition

An action of G on X is called **transitive** if there is only one orbit. In this case X is called a **homogeneous** G-space.

Let G be a group acting on a set X. The **orbit** of $x \in X$ is the set $Gx \subseteq X$, i.e. $Gx = \{g.x \mid g \in G\}$.

• S_4 acts on a cube, and so it acts on the sets of vertices, edges and faces of the cube. Describe the orbits of this action.

Definition

An action of G on X is called **transitive** if there is only one orbit. In this case X is called a **homogeneous** G-space.

Recall: there is a **transitive** action of *G* on itself by $g.h = L_g(h) = gh$ called **left multiplication** (see before). There is a similar action called **right multiplication** given by $g.h = hg^{-1}$. Check that this is an action.